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ABSTRACT

In this paper several infinite two-person games are studied,
all having the following common structure: Player 1 (Emitter) pro-
duces a binary periodic sequence. Player 2 (Predictor) observes
some initial segment of this sequence and then tries to predict the
next digit. The payoff to Emitter is zero if the prediction is a
correct one. The games differ in additional assumptions--those
are in particular: (1) Predictor required to make his prediction
after observing a prescribed number of digits of the sequence.

(2) Predictor allowed to observe any number of digits but earning

a decreasing amount for each correct prediction as the number
increases. (3) The period of the emitted sequence being chosen

by random from some fiy:d distribution. (4) Emitter allowed to
choose the period but being paid a decreasing amount for incorrect
prediction as the period increases. Combining these assumptions

two zero-sum and two nonzero-sum games are obtained. It is shown
that all these games possess a solution, some are at least partially

solved and their further properties investigated.
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1. INTROLUCT1ON.

In this paper we study certain types of infinite games which
belong to the class of discrete emission-prediction games, also
known as discrete games of aiming and evasion. An emission-pre-
diction game is a two-person game, where the first player, to be
named Emitter, produces a sequence of elements from some fixed
finite set A. The second player, to be named Predictor, is allowed
to observe the sequence for some time and is then required to make
a prediction of some kind about the future behavior of the sequence.
The general Predictor's goal is to make a correct prediction, while
Emitter wants to avoid this.

Emission-prediction games may serve as models for a variety
of conflict situations. For instance, Emitter could be identified
as an attacker (bomber, submarine, guided missile, guerilla
unit) performing a series of evasive maneuvers, which,in the dis-
crete time, represent the sequence being emitted. Predictor is
trying to destroy the attacker. Since, in general, the attacker
can be intercepted only after one or more time units have elapsed
from the last observed maneuver (or position), Predictor must be
able to correctly predict future maneuvers (positions) of the
attacker.

To our best knowledge the study of emission-prediction games
was initiated by Isaacs (the "bomber and battleship" problem

and have since been investigated by Dubins [2], Isaacs and Karlin [5],



Isaacs [4), Karlin [6], Blackwell [1], Ferguson [3] and Matula [7].
The assumptions made by these authors can be summarized as follows:
(1) No restriction is placed upon the emitted sequence.

(2) Predictor is allowed to observe the sequence as long as he
wishes before he decides to make a prediction concerning
several subsequent terms of the sequence.

(3) The game is a zero-sum game with the payoff depending only
on the discrepancy between the prediction and the actual
values.

The emission-prediction games investigated in this paper

differ mainly in one crucial aspect; we assume that the emitted

sequence is a periodic one. Apart from this being of interest per

se we have been motivated by the following idea. Suppose that the
attacker is a simple automatic device with built-in preprogrammed
ability to perform evasive maneuvers. The trajectory of this
device will then follow a periodic pattern with some period depend-
ing upon the complexity of the program and unknown to Predictor--
the defender. Even in situations where the attacker is controlled
by a human operator periodicity may very well serve as a first
approximation. We believe that most humans do exhibit a kind of
cyclic pattern when asked to perform a series of evasive, 1i.e.
unpredictable maneuvers.

Assuming periodicity of the emitted sequence, however,

compels us to place some additional restrictions on Emitter and/or




Predictor since otherwise the game would not possess a solution.
The additional restrictions considered in this paper are: the
period is chosen by an independent chance mechanism, bounds on the
length of observation intervals, and penalties for long periods and
lengthy observation. As for the type of prediction required we
limited outselves to the simplest case of predicting the next term
of the sequence. (With the periodicity assumptions this is by no
means trivial as it would be without it.) For the sake of simpli-
city of notation we consider binary sequences only; most of the
results of this paper extend easily tc the m-ary case.

Another possible application of the model may be that of
an optimum jamming strategy for a missile defense system. Suppose
that a ship is being attacked by a missile equipped with a target
gsearch radar. To avoid detection the search radar is not active
all the time but rather is constantly being switched on and off in
some programmed pattern. The intensity of illumination of the tar-
get by the search radar then follows a binary periodic sequerce
(in a discrete time). The defender of the target (ship) wants to
jam the search radar. The jamming device, however, must not be
transmitting all the time since the missile could then home on the
transmitter and hence the target. Thus, the defender faces the
problem of predicting the next mode of operation of the search
radar after observing the illumination pattern for some limited

time, i.e., predicting next term of the binary sequence.



2. PRELIMINARIES.

Throughout this paper the symbol A will denote the two-
element set A = {0,1} and the symbol Q with generic elements
w will denote the set of all periodic sequences of zeros and ones.

We say that a binary sequence
”'“r%"“)‘“ne“ a®1.,2:,...;
is periodic with the period w(w) = t; t=1,2,..., 1if

® ke = Yn for every n=1,2,...; k=1,2,... .

Obviously, each periodic sequence w €  has only one period, and

we denote

Qt = (0w €N : m(w) =t}

so that @ 1is a disjoint union of 01,02,... .
If we€N and n=1,2,... then W will denote the
n-th term and g]n the ordered n-tuple of the first n terms

of the sequence w.

Let A" be the set of all ordered n-tuples of zeros and
ones, If a = (al,...,an) € A" and B € A then ap 1is the
ordered (ntl)-tuple (al,...,an,B) and (a)“ is the periodic

sequence

ws (al,...,un,ul,...,an,...). Clearly, ﬂ((a)w) < n.




For every a € A" and ¢t = 1,2,... we define the function

1 1if there is w € Ot such that o = (a).,
I (a) = { 1)
0 otherwise,
and the function
A(a) = min{t = 1,2,... : It(a) = 1}. (2)

Thus It(t) serves as an indicator of 'potential periods” of a
and A(a) 1is the "smallest potential period" of a.

Later we will need the following lemma,

Lemma 2.1: For every a € A" there exists a € A such that

A(aa) > Eﬂ + 1, where (x] denotes the integral part of the

number x.
Proof: For any n-tuple a = (cl,...,an) denote

T(a) = {t = 1,...,n~1 : It(‘) =1} 1if n>1
and T(a) =@ if n=1. Notice first that

T(a0) N T(al) = ¢
and (3)
T(a0) U T(al) = T(a) U {n}.

This follows by realizing that if ¢t € T(a) then a = (al,.;.,ut;

al,...,at;...;cl,...,ai), l<i<t so that t € T(aoi+1)



if :1 <t and’' t € T(aal) if i = t. Conversely, if t €}T(aai+1)

and t <n then t € T(a) and clearly t ¢ T(aa) for a ¢ LY
I ) _ :

Finally, ' n € T(aa) 1if and only if aif?al.

.Let now a = (ai,..;,qn) and assume n > 2 since the
lemma. is trivial for n = 1,2. If T(a) = ¢ . then by (3) T (a0)
UT(al) = {n} 'so that A(aa) 2 n for any a € A.

If T(a) ¥ ¢ then tﬁere.iq b= (81,;..,ka anq

c's gyl""’Y;) . such ;hat
o ! '

. 1
) 1

| a = (bc bc ... bc b) and T(bc) = 9.
! . ' /m times |

1

1f T(P) =9 fhen T(a) = {k +Al} and by (3) A(aa) 2 n f;t Qome.

a € A.

If T(b) # @ then there is e = ()seeese,) and d = (§,...,6))

such that

b -'(ed ed ... ed e) ;nd T(ed) = 9.

|

Hence.takihg a ¢ € = Bl we have

A(aa) 2 h(k+25 +r+eszk+t+2=n-k+2

i
and since 2k £ n -1 we obtain

A(aa) 2 n_;l. + 2> [%] + 1. The lemma is proved.

{




3. ZERO-SUM GAMES WITH RANDOM PERIOD.

In this section we consider the case where

(1) the period t of Emitter's sequence is chosen randomly
according to some distribution v known to both players,

=(2) Predictor is allowed to observe the first n digits of
the Emitter's sequence and tries to predict the next
(n+l)st digit,

(3) the payoff to Emitter is zero if the prediction is correct
and one otherwise.

In other words, the expected payoff is the probability of
wrong prediction, which the Emitter is trying to maximize and the
éredictor to minimize.

We will denote the resulting zero-sum game by G(v,n),

where v(t), t =1,2,... is the period distribution,

v(t) 20, t=1,2,... ; 2 v(t) =1
t=1
and n=1,2,... 1s the length of the sequence observed by the
Prédictor.
Next we describe Emitter's and Predictor's pure strategies.
To specify a pure strategy Emitter must choose for every
t=1,2,... a binary sequence with the period t. Emitter's pure

strategies 8 are therefore sequences

g8 = {st, t=1,2,...}, where 8, € nt.



The set S of all Emitter's pure strategies is then an infinite
Cartesian product S = Ql x 92 X ... of finite sets and is
therefore uncountable.

Predictor's pure strategies ¢ are simpler to describe.
Each ¢ 1is a mapping of A" into A= {0,1}. For each a € An,
¢(a) 1is the prediction of the (ntl)st term of the Emitter's
sequence 1f the first n terms observed are the n-tuple a. The
set ¢ of all Predictor's pure strategies is therefore a finite

n

set of 22 elements.

The payoff function W(s,¢) is then given by

W(s,9) = [ v(t) W (s,9) ; s€S, ¢€e¢,
t=1

where for t =1,2,... and o = 8.»

1 if 6(9]“) ¢ W 41
W .(s,0) =

0 if ¢(9_|n) 0o
It is easy to see that wt(s,o) is nothing but conditional proba-
bility of wrong pi - diction given that the period is t and hence
W(s,$) 1s the unconditional error probability.

The game G(v,n) 1is now formally defined by the triplet

(S,#,W). This is an infinite zero-sum game, however, since the set

¢ 1s finite and the ~ayoff function is nonnegative and boundel by

one we have by the well-known theorem of Wald [8] the following

proposition.




Proposition 3.1: The game G(v,n) has a value and Predictor has

an optimal strategy.

Let us turn our attention to the existence of Emitter's
optimal strategy. By another Wald's theorem ([8), Theorem 2.20)
an optimal strategy exists if the corresponding space of pure strate-
gles is totally bounded with respect to the intrinsic metric
([8], sec. 2.1). Now the space S of Emitter's pure strategies
is totally bounded in the above sense if for every € > 0 there
exists a finite subset Se of S such that for every 8 € S
there is an r € Se for which

max|W(s,¢) - W(r,¢)| < e.
¢€d

It is easy to see that this condition is satisfied for the game

G(v,n); take an integer T such that Z v(t) < ¢ and define
t>T
Se to be the set of all pure strategies s = {st, t=1,2,...}

with s, fixed for t > T. Thus we have proved the following

proposition.

Proposition 3.2: In the game G(v,n) Emitter has also an optimal

strategy.
In general, optimal strategies will be mixed strategies,
that is probability distributions on the corresponding spaces of

pure strategies.

Let X be the space of Emitter's mixed strategies. Since
S 1s a product space a mixed strategy x € X will be a product

probability measure



10

X =X X Xy X eee

where X, is a probability distribution on the finite set ﬂt.

In other words, x € X 1is completely specified by a sequence of
probability distributions X, t=1,2,... . The payoff function
W then extends onto X x ¢ by

W(x,9) = I W(s,¢)dx(s) = J ) v(t)W (s,4)dx(s)
S

S t=l

= 1 v(v) J W (s,0)dx(s) = I ove) ] W(s,0)x (s).
s

t=1 t=1 steﬂt

Predictor's mixed strategies y € Y are again probability
distributions on the finite set ¢. Thus for every such y and

8 €S we can define

W(s,y) = ] W(s,)y(®) = [ v(&) [ W _(s,0)y(4).
9€¢ t=1 ¢€S

Let y €Y and let for every a € An, a €(0,1} f (a) = Z y(¢)
a
{¢:4(a)=a}
Clearly, fu(a) is the probability of predicting a 1if the
n-tuple a has been observed and if Predictor uses the mixed

strategy y. Thus f = (fo,fl) could be called Predictor's

behavioral strategy and we have for w = 8,
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W.(s,£) = ] W (s,0)y(¢) = (4)

{fow“) if w =1,
=)

n
f1(9|) if o, =0.

Conversely, 1if f = (fo,fl) where f maps A" into [0,1] and

fo(a) + fl(a) =1 for all a € A" then

y@@) = lfj@ + Jf@ , e€0,
{a€A":4(a)=0}  {a€A":¢(a)=1)
is a mixed strategy and (4) holds. Hence we can work with the set

F of Predictor's behavioral strategies instead of with the set Y.

Proposition 3.3: The value v of G(v,n) 1is given by

v = min v(t) max max{I (a0)f, (a),I (al)f.(a)} (5)
f€F tzl aeAn t 1l t 0

*
and f 1s Predictor's optimal strategy if and only if it minimizes

the series above.

Proof: Since G(v,n) has a value we must have v = min sup W(s,f).
feF ses

Now
o0

sup W(s,f) = Z v(t) max Wt(s,f) ,
8€S t=1 stent

and by (4)

max W _(s,f) = max{f. (a)},
ﬂtﬁﬂt t l-a



12

where the latter maximum is taken over the set of all (n+l)-tuples

1

aa € A" for which glnﬂ = aa for some w € Qt, i.e. for

which It(aa) = 1. Hence

max wt(s,f) = max max{lt(aO)fl(a),It(al)fo(a)}

8 _€N a€A

t t
and the second assertion follows from the existence of Predictor's
optimal strategy.

Setting f(a) = (%’%) for each a € A" in (5) we obtain

Corollary: 0Osvsg 2

*
Proposition 3.4: There exists Predictor's optimal strategy f

such that for each a € A" either f*(a) = (1,0) or f*(a) = (0,1)

*
or f (a) = (‘]2-',-;')-
Proof: Let for every t=1,...,nt2 and a € A"

B(t,a) = {so : fo(a) = :laaxn mx{It(aO)fl(a),It(al)fo(a)}},

where _f_o denotes the vector with 2" components fo(a). Clearly,

B(t,a) 1is a convex polyhedron contained in the Zn-dimensional
unit hypercube. Furthermore, the vertices of B(t,a) are vectors
with components O or 1 or 1/2 only.

Let u = (a),...,a a, € A" and let

o+2)

nt+l
L(£)=§ v(t)f (a)+f.(a ) T w(b).
u=0" = L 0t 0 %n#2” &
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Now l..u is a linear function of _f_o and hence its minimum over

the convex polyhedron

2
B = N B(t,a)
u t=1 t
is attained at one of the vertices of Bu' Denoting 53 the

vertex at which the minimum is attained we see that for each a € AP
fg(.) =0 or 1/2 or 1. (6)

Finally, since It(aa) =1 for t>n+1,

m;.n tzl v(t) :;:n max{I_(a0)f, (a),I (al)f (a)}

= min , min L (f.) = min L fu)
Mmn (o+2) ) u$o A (z+2) uo

u* u
= *
L *(fo ) » wvhere u minimizes L (20) .

u®
0 ]
optimal strategy which together with (6) terminates the proof.

* *
It follows from Proposition 3 that 9 = (f l-fg ) 1is an

Proposition 3.5: Let 2 v(t) >-;—'. Then v --;- and
t>otl
f(a) = (%,%), a € A" is the unique Predictor's optimal strategy.

*
Proof: Let f ©be an optimal strategy and assume that for some

*
a € An, a € {0,1} fu(a) ¢ % It follows from the proof of
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Proposition 3.4 that there must be another optimal strategy with
* *

fu(a) = 0 or 1. Hence assume that fa(a) = ] (otherwise take
fl-a(a))' Then

L, v na, max{L_(a0)£; (a) I, (al) £y ()}

% * 1
> rax_ max{f, (a),f.(a)} v(t) > =
aeA™ 1 0 t>£+1 2

*
so that v >-l which is a contradiction. Hence fu(a) --% for

2’
*
all a € A", a € {0,1). Por this f

o 1 1
ve tzl v(t) 5':2:n nax{I_(a0),I (al)} = 3

since for every t = 1,2,... there exists a € A" and «a € {0,1}

such that It(a ) =1,

Proposition 3.6: Let the distribution v be such that

WG+ > T we), (7
e> (141

where [%] is the integral part of -%. Then

v= ] w(p) (8)
t>[5]+1
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®
and the Predictor's behavioral strategy f defined by
n *
A(ea) = [-2-] +1 = fa(a) =0 (9)

is an optimal strategy.

Proof: Let us assume first that n is odd so that [—] +1= %]*

Let e € A" be the n-tuple which has 1 at the ( )th place

and zeros elsewhere. Clearly

I(eO)-l if an only if t>E.'2i

and

It(el) =] 1if andonly if either t = ”Tl or t>n+1l.

Hence

I v(t) max max{I (a0)f,(a),I _(al)f(a)}
t=1 aGA

> 2 v(t) max(I_(e0)f, (e),I (el)f,(e)}
t=1

ntl
- v(-z—-) fo(e) + fl(e)n-{], v(t) + max{fl(e),fo(e)}vtzﬁl v(t)

-3—<tsn+1

2 Z v(t) by the hypothesis. Thus v 2 Z v(t).

*
Next let f be the strategy (9). Then by Lemma 2.1
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v £ tzl v(t) nax, maic{It(aO)fI(a),It(al)f.;(a)}

* *
= v(t) max_max{I_(a0)f. (a),I (al)f.(a)}
: £+1 acA™ ER S g @
2 i

*
Hence v= J v(t) and f 1s an optimal strategy.
n+l

=

2
If n is even we begin with e having 1 at the (%+1)st place.

The rest follows verbatim.

If the hypothesis of the above proposition is not satisfied
the game G(v,n) 1is very difficult to solve. As seen from Propo-
sition 3.3, this amounts to solving the nonlinear programming

problem:

"minimize tzl v(t) 22:n max{It(aO)fl(a),It(al)fo(a)} (10)

subject to f € F."

It is true that it can be solved by breaking it into a number of linear
programming problems as we did in the proof of Proposition 3.4 but
the size of this task is still formidable. A slight simplification,

however, can be obtained by considering truncated versions of

G(v,n).
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Let T=1,2,..., let GT(v,n) be the game (S,¢,WT)
obtained from G(v,n) by truncating the distribution v at T,

that is setting v(t) =0 for t > T and normalizing to onme.

Proposition 3.7: Let VT, f'r and xT be the value and optimal

strategies respectively of the truncated game GT(v,n). Then, as

T-bn’

T * T *

vI +v, £f +f and x -+ x,

* *
where v, £ and x are the value and optimal strategies of

G(v,n).

Proof: Since v 1s a probability distribution and

W (x,£) - W(x,E)| = [ w(t)
t>T
WT(x,f) converges to W(x,f) uniformly in both f and x, which

implies the statement.

To the end of this section we present a solution of a small game

G(v,n).

Example: Let n=5, v(t) >0 for t=1,...,5 and v(t) =0
for t > 5. To compute the right-hand side of (5) we need the
values of It(au) for t =1,...,5, a¢€ AS, a =0,1. These
are given in the first two columns of Table 1. Substituting into

(10) we obtain
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v(l)f (a ) + v(2)f (a ) + 6(3)max{f (a )»f (alo) £ (alb)} :
+ v4)max(£; (a3).f) (a5) £ (a,) £ (ag) g 8y )£y (a) )

+ v(5)max{f1(ai); i=2,...,16}

!

+ v(l)f (a ) + v(2)f (a 2) + v(3)max{f (a 8) f (323) f (a 9)}
+ v (4)max{ £ (a50) 0 (8,0) £ (8y6) ofg (8gy) o) (By) o (a1 0) ) |

o+ v(S)max{foxai)f 1 =17,...,31}. . . (11)

Looking at the expression (li) as a function of 64 nonnegative
variables ' fj(a ) constrained to satisfy f (a ) + f (a ) =] we
see that the only va:iables that make the minimization difficult
are those for which both f_ (a ) and f (a ) appear in (11).

Hence it is easy to conclude that the minimum of (11), the value

i

v of the game, is equal to the minimum of '

y(z)dl + v(3u, + v(é?max{m3,1-uz} & v(A)max{1-ui{1-u2,1-u5} 12)

over all ul,uz.u satisfying 0 < uj <1, j=1,2,3.
The minimum of (12) is found to be the smallest of the four numbers:
v(4) + v(5). v(3) +-v(5). v(2) + V(3) + v(4), 'i(v(2)+v(3)+v(4)+v(5))-

Hence, the value v of the game 1is: .

Case 1: vk4) < v(3) and v(4$ +v(5) = v(2)‘+ v(3)

v = y(4) + v(5)
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lCase 2: v(3) £ v(4) and v(3) + v(5) < v(2) + v(4)

v = v(3) + v(5)

Case 3: v(2) + v(3) + v(4) < v(5)

v = v(2) + v(3) + v(4)

Case 4: v(2) + v(3) - v(5) £ v(4) = v(3) + v(5) - v(2)
vs= %(v(2)+v(3)+v(4)+v(5)) = %(l-v(l))
Predictor's optimal strategies for each of the four cases are given

in Table 1.
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4. ZERO-SUM GAMES WITH PENALTY FOR LONG PERIODS.

We will now relax the restrictions on Emitter and let him
choose freely the period of the sequence emitted. We will, however
impose a penalty on Emitter for choosing too large periods. The
game then proceeds as follows:

(1) Emitter chooses a period t = 1,2,... and a periodic
binary sequence with the period t.

(2) Predictor is allowed to observe the first n digits of that
sequence and tries to predict the next (n+l)st digit.

(3) The payoff to Emitter is zero if the prediction is correct
and is equal to a nonnegative constant c(t) 1f the predic-
tion is wrong and the emitted sequence has period t.

The sequence c(t), t = 1,2,... represents the penalty and we

assume that for all t = 1,2,...
c(t) 2 c(t+l) 20 (13)

To avoid the trivial case we assume that c(t) > 0 for at least
one t.

The resulting zero-sum game is then specified by the
sequence (13) and an integer n = 1,2,... . We will denote it by
G(c(t),n).

The space S of Emitter's pure strategies s now consists

of ordered pairs
8 = (t,st) where t = 1,2,... and 8, € ﬂt.

Hence S 1is countably infinite.
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The space ¢ of Predictor's pure strategies as same as
same as bcfore.
The payoff function W(s,$), s €S, ¢ € ¢ 1is for

8 = (t,st), s =u given by

t

n
c(t) 1if o|) ¢ IR
W(s,¢) = (14)
n
0 if o] = ® 4
Introducing again Predictor's behavioral strategies f we have
now
c(t)E(w|™ 1f w . =1
0 nt+l g
W(s,f) =
n
c(t)fl(gl ) if o, =0,
Since the space ¢ 1is finite and by (13) the payoff function is

bounded we have

Proposition 4.1: The game G(c(t),n) has a value and Predictor

has an optimal strategy.

This time, however, we can obtain explicit expressions.

Proposition 4.2: The value v of G(c(t),n) is given by

c(A(a0))c(r(al)) (15)

M :‘exn c(A(a0)) + c(r(al))

*
and the strategy f defined for all a € A" by
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Rral = c(A(a0))
£0(a) = TO(20)) + c(h(aD)) (16)

is Predictor's optimal strategy.

Remark: Expressions %- are to be interpreted as 0 in (15) and

as any number x, 0 £ x <1 in (16).
Proof: Let f € F.

sup W(s,r) = sup {c(t) max_max{I_(al)f.(a),I (a0)f, (a)]}
8€S t=1,2,... aeA® Ealt ¢ -

= max_ max{f.(a) sup c(t)l (al),f.(a) sup c(t)I_(al)}.
aeA” 0" ta1,2,... ¢ 1 ea1,2,... F

From (13) for a = 0,1

sup c(t)It(aa) = c(A(aa)).

t=1,2,...
Hence
v = min sup W(s,r) = max_ h(a),
f€F s€S acA"”
where
h(a) = min max fa(a)c(x(aa)) F (17)
f(a) a=0,1

However, h(a) 1s ea-ily recognized to be the value of the two-

by-two matrix game with the matrix

0 c(x(a0))
H(a) =
c(Ar(al)), 0

so that (15) and (16) hold and the proposition is proved.
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Let us now turn our attention to Emitter's strategies. Since
the space S 18 countable, the space X of Emitter's mixed strat-
egies is simply the set of all probability distributions on S.

It is, however, more convenient to define a mixed strategy x € X

as the pair
x = (&, {u 1)),

where ¢ = 51,52,... is a probability distribution on positive

integers and u,Z are distributions on finite sets Qt. Clearly,

t
if s = (t,st) €S and x € X then x(8) = Et ut(st).

* * *
Proposition 4.3: Let a = (ul,...,an) € A" be such that

h(a*) = max h(a), (18)
a€A

where h 1is defined by (17), let for a = 0,1
*
ta = A(a a),
and

* * "
Tea (E1’°°"Eta) € Qt

* x %
Then Emitter's mixed strategy x = (¢ ,{ut}), where

c(ey)le(ty) + c(:l)]‘l it = e,
® =
I C(to)[c(to) + c(tl)] 1 if t = t»

0 otherwise,
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o 1 if s =r. , t=t, a=0,l,
. £ & a
ut(st) -

arbitrary otherwvise,
is an optimal strategy.
Proof: Notice first that since by Lemma 2.1

-

max{A (a0),r(al)} > [E-J +1

2
the (n+l)st digits of the two sequences w = r, and o' = r,
0 1
must be different. Let now ¢ € ¢. We have
* * * %
Wix ,9) = ] W(s,0)x (s) = &, c(t0)]o(a) - w |
8€S 0
] * * C(to)C(tl)
+E c(t)|e@) -w' .| 2 mie £ c(t) = -v
e, 1 w01 ta & clgg) +elr)

*
and since this is true for any ¢ € ¢, x 1is an optimal strategy.

Remark: The results of this section remain true even if the time
when Predictor is required to make a prediction is allowed to
depend on the observed sequence in some predetermined fashion.
For instance, we may ask Predictor to predict the next digit as
soon as he observes a certain number k of ones or as soon as
the number of observed digits reaches some n, whichever occurs

first.
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The space ¢ of Predictor's pure strategies is then the
set of all mappings ¢ from a finite set B into {0,1}, where
the set B 1is a finite collection of finite strings of zeros and
ones with the property that for every binary sequence w € Q
there is a string b € B, which is the initial segment of w.

The set B 1is determined by the requirement imposed upon
the prediction time. For instance, in the case mentioned above
the set B will consist of all strings of at most n zeros and ones
which contain at most k =zeros.

The only modification needed in order to extend the results
of this section to this more general case is to replace the set

A" by the set B.

Example: Consider the game G(c(t),n) with n =5 and

%(6-:) {f t=1,...,6,
c(t) =
0 if t > 6.

To solve the game we firet compute A(aia) for each a, € A5,

o = 0,1. These are in the first two columns of Table 2. Then

compute c(x(aiu)) for (19) and h(ai) from (17) - see Table 2.
Hence the value v of the game G(c(t),n) 1is v = 1.5

and Predictor's optimal strategy f* as computed from (16) is in

the last column of Table 2. Emitter's optimal strategies are com-

puted from Proposition 4.3. We obtain
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25 1if t = 3,
*
E,.=\N.75 1if t =35,
t
0 otherwise,

and

b3 (011)%, (1000} = 1, ug ({(01101)%,(10010)°}) = 1

and arbitrary otherwise. In other words, Emitter should produce
the sequence 011011011... or 110110110... with probability
1/4 and the sequence 0110101101... or 1101011010... with

probability 3/4.
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5. NONZERO-SUM GAMES.

In the previous two sections we dealt exclusively with
zero-sum games. That is, the payoff to Predictor was always
assumed to be the negative amount of the payoff to Emitter.

Let us now modify the game G(c(t),n) of the previous

section by adding to its description the assumption:

(4) The payoff to Predictor is one if his prediction is a correct

one and zero otherwise.
We obtain a new nonzero-sum game
G'(c(t) ,n) = (S,¢ sw] owz) ’

where the strategy spaces S, and Emitter's payoff function Wl
are same as in the zero-sum game (G(c(t),n). Tuo Predictor's

payoff function Wz is defined by

1 1if ¢(g|n) 0oL
W2(8,¢) =
0 1f ¢@|™ #u,,,

where w 1s the sequence 8,

Proposition 5.1: The nonzero-sum game G'(c(t),n) has an equili-

x * * *
brium point (x ,f ), where f 1is defined by (16) and x 1is

® ®
defined as in Proposition 4.3 with the exception that Et = Et = 1/2.
0 1

Furthermore, all equilibrium points are equivalent and interchangeable
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yielding the minimax payoffs v and 1/2 to Emitter and Predictor

respectively.

*
Proof: Let a be defined by (18). Then for all f € F by the
definition of x*
* * * * * 1

so that trivially

* I
sup Wz(x ,f) = Wz(x £ ) -l

f€F 2

*
Since f is a minimax strategy in G(c(t),n)
*
wl(s,f )V

for any 8 € S.
* *
Now by the definition of x and f
x _* x k% X k%
Wx,f) = °(to)£cof1(a ) + C(tl)etlfo(a )

= c(tgdelt))le(ty) + c(tl)]-l = hite =T
Hence

* x %
sup wl(s,f ) = wl(x i) = v,
8€S
k%
which together with (20) proves that (x ,f ) 1is an equilibrium

point yielding minimax payoffs.
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Finally it is easy to see that no equilibrium point can
yield payoff greater than minimax for either of the players since
this would decrease the other player's payoff below his minimax
value. Interchangebility is obvious.

The last type of an Emission-Prediction game considered in:
this paper is the most general one and is obtained by furthér
relaxing the restrictions on Predictor.

(1) Emitter chooses a period t = 1,2,... and a periodic
binary sequence with this period.

(2) Predictor is allowed to observe as many digits of the
sequence as he wishes and after he decides to cease
observation he is required to predict the next digit.

(3) The payoff to Emitter is zero if the prediction is
correct and is equal to cl(t) 2 0 1if the prediction
is wrong and the sequence has period t.

(4) The payoff to Predictor is zero if his prediction is '
wrong and is equal to cz(n) 20 1if it is correct

and the length of the observed segment was n.

The constants cl(t) and cz(n) represent penalties for long ;

periods and lengthy observation. We assume that

t=1,2,...»1= cl(l) 2 cl(t) 2 cl(t+1), lim cl(t) =0

t->m

and
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n=0,1,... =1 =c(0) 2 c,(m) 2 cp(atl), 1im ¢,(o) = O
. . ~ n+®

) H { ]
We will denote the resulting nonzero-sum game by G(cl(q),

e, ). : ‘

| The space S of Emitter's pure strategies in this game 1is

same as before. Predictor's pure strategies €Y are pairs -

| !
v = (B,¢),

where B 1is a finite set of“finite strings of zeros and ones
' H

such that for every w € Q there ié some b € B which is an
' i

initial segment' of w. ¢ is a mapping frem B into {O0,l}.
Clearly, the set ¥ of alllPredictor's pure strategies is now

.countably infinite.
| Let s .:(tyst)o v=(B,¢), W= st’ b€B .be!the

initial segment of, w, and let n be ‘the length of b. The

' payoffs are now given by: o '

! cl(t) if ¢(b)‘# 0 41
wl(s’*) - ’ | | |
f CNo ' 1f ¢ (b) -

ntl?

!

=°z(“) 1f ¢ (b) = U0

wz(s’wj = ! ! ) I
i : 0 if ¢(b) ¢ w;+1.

i
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Proposition 5.2: The game G(cl(t),cz(n)) has an equilibrium

point.
Proof: Let for j =1,2

(s,8') = Buple(s.w) -W.(s',9)| and

]

p; ,(¥,¥') = sup|W, (s,¥) = W, (s,9")
j ’2 ses j j I

be Wald's (pseudo) metrics [8] on S and ¢ respectively. Let
€ >0 and

, £
S, = {(t,8) €5 : ¢ () 23},
v, = ((B,0) € : e, (|B]) 23},

where |B| 1is the length of the longest string b € B. Since
lim cl(t) = 1im cz(n) = 0 the finite sets Se and we are
tre nr®
e-nets in the (pseudo) metric spaces (S,pll) and (ngzz)
respectively and hence these spaces are totally bounded ('condi-
tionally compact' in Wald's terminology). By (8], Theorem 2.1,
so are then the spaces (S,plz) and (W.DZI). Let, for k=1,2,...,
x &
(xk,yk) be an equilibrium point in the finite game (sllk’wllk’wl’WZ)'
x %
Then there is a subsequence (xk ,yk), i=1,2,..., and a pair
i 1
* *

of mixed strategies x € X, y €Y such that as i +», § = 1,2,

S 0 d i 0. 1 icul hi
pj’l(xki,x ) » an pj,z(yk »Y ) - 0. In particular this

i
implies, as i + =,
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* * ® %
lwl(xki’yki) = wl(x 'Y )I + 0, (21)
* ]
|sup W, (x,y ) - sup W, (x,y)| + 0, (22)
XX x€X
1/k
1
% *®
|sup W, (s,y, ) - sup W (x,y)]| + 0. (23)
x€X i
1/k
i

x &
Finally, since (xk oYy ) 1is an equiiibrium point in Gk
i i i

* ® *
sup wl (x ] YR ) - wl (xk ] yk )
x€X i i 1
1/ki

whence letting 1 + « 1in (21) through (23) we obtain
* x &
sup W, (x,y ) = W, (x ,y).
x€X
Similarly,
* * &
sup W,(x ,y) = W,(x ,y ),
y€Y |
x %
so that (x ,y ) 1is an equilibrium point in G(cl(t),cz(n)) and |

the proposition is proved.

Remark: We suspect that much stronger statements, namely that
all equilibrium points are equivalent and interchangeable, can

be proved, but we have not been able to prove this.
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I ) | I(a0) £ () = (£5(a),£; (@)

s t
i a, 12345(12345 Case 1 Case 2 Case 3 Case 4
1160000 i
2/00001 1 \
s3looo1o0 11 [ 4O (1,0)
4]00011 1
500100 1 11l o, | ®9 Gy
6{o00101 1
7100110 111} a,0 (1,0)
8loo111 1 (1,0)
9lo1000 1 1| arbitrary (0,1) G.3
1001001 1 1l a0 | a0 (1,0)
1nnforo1o0] 1 1| o, | o, Gy
12/01011 1l @o | a0 1,0)
13{01100 1 1| arbitrary (0,1) Gi3
1lo1101 1 1l a0 | a0 (1,0)
15{01110 1 1 arbitrarJﬂ 0,1) ) (-]2;,%
16/01111 1l a0 | a0 (1,0)
1710000 1 ©,) | ,1 (0,1)
1810001 1 1 | arbitrary (1,0) Gy
1910010 1 1 ©,1) | o, 0,1)
20(10011 1 1 | arbitrary (1,0 Grp)
21110100 1 ©,0 | ©,n 0,1)
22{10101 1| 1 1,0 | @,0 G5
23]10110 1 1 ©,1) | (©,1) 0,1)
2%l10111 1 1 | arbitrary (@,0) Gis
25/11000 1 \ ©.1)
2611001 11 (0,1) (0,1)
27011010 1
811011 11 1 (1,0) G.3)
29111100 1 0,1)
0f11101 11
afi1110 1 (0,1) ©.1)
2111111 }

TABLE 1.
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